Freifunk-Gateway aufsetzen

Aus Freifunk Franken
Wechseln zu:Navigation, Suche
Achtung: Die Seite wird aktuell für den KeyxchangeV2 umgebaut.
Daher könnte sie zeitweise Inkonsistenzen enthalten und wird sich inhaltlich stark verändern. Den letzten V1-Stand gibt es hier

Inhaltsverzeichnis

Preface

Für das Aufsetzen eines Freifunk-Gateway gibt es kein universelles Kochrezept. Auch erfahrene Admins erfahren bei der Installation kleinere und grössere Herausforderungen, die es zu überwinden gilt. Unterschiedliche Softwareinstallationen, Netzwerkkonfigurationen, Hoster und VPN Anbieter können Anpassungen zu der hier präsentierten Vorgehensweise notwendig werden lassen, z.B. indem Pakete nach installiert werden oder Netzwerkkonfigurationen angepasst werden müssen. Um dies zu erleichtern, versucht der Artikel nicht nur die Konfiguration darzulegen, die in diesem spezifischen Fall funktioniert hat ("Know-How"), sondern versucht auch kurz auf die Hintergründe einzugehen, um ggf. eine Anpassung zu erleichern ("Know-Why").

Freifunk Franken ist "Development in Progress", d.h. eine Konfiguration die heute funktioniert, wird morgen durch eine andere und vielleicht sogar bessere abgelöst. Ein einmal aufgesetztes Gateway muss sich so der Entwicklung anpassen.

Für Rat und Tat empfiehlt sich die Freifunk Franken Development und die Freifunk Franken Gateway Mailingliste.

Zum den Änderungen vom KeyxchangeV1 zum KeyxchangeV2 Gateway geht's hier: https://wiki.freifunk-franken.de/w/Freifunk-Gateway_aufsetzen/keyxchangev2


Referenzen / Andere Freifunk HowTo's


Voraussetzungen

Was der Server können muss

  • Öffentliche IPv4 und IPv6 Adresse
  • Kernelmodule laden
  • Nur relativ wenig CPU und RAM nötig
  • dafür relativ viel Traffic (Je nach Größe und Anzahl der Hoods durchaus im ein- bis niedrigen zweistelligen TB Bereich)

Was der Betreiber mitbringen sollte

  • Grundlegende Kenntnisse mit IP-Routing (IPv4 und IPv6)
  • Motivation, etwas [jede Menge] dazuzulernen und sich aktiv mit der Materie auseinanderzusetzen.
  • Das Freifunk Netz ist der optimale Ort, um sich in dieser Richtung neue Kentnisse anzueignen - zumindest wenn man sich dann auch damit (und. v.a. mit den auftretenden Problemen) auseinandersetzt
  • Es gibt viele nette Leute im IRC, die immer gerne helfen, wenn die Motivation da ist, sich auch selbst mit dem Problem zu befassen.
  • Ohne Vorkenntnisse ist es schwierig aber ganz und gar nicht unmöglich ein Gateway aufzusetzen. Soweit es nicht bei dem Kenntnissstand bleiben soll, wird auch hier gerne geholfen.

Was das Gateway können muss

  • fastd VPN
  • Batman (Compat15)
  • DHCP
  • Router Advertisements
  • Routing
  • Babel Routing Protokoll
  • Webserver für Hoodfiles

Näheres ist unter Dienste beschrieben.

Anonymisierung (Störerhaftung)

Sofern der Server nicht über einen Uplink verfügt, wo es egal ist was durchgeht (unseriöse Bulletproof-Hoster), möchte man vermutlich den Traffic aus dem Freifunk-Netz durch ein VPN ins Internet schieben.

Auf längere Sicht, wäre es natürlich wünschenswert, wenn die Problematik der Störerhaftung in ihrer derzeitigen Form wegfällt um beispielsweise eine dezentralere Infrastruktur zu erlauben.

Folgende VPN-Anbieter sind zu diesem Zeitpunkt jedoch empfehlenswert:

  • Mullvad (Schweden, Niederlande)
    • Bis zu drei gleichzeitige Verbindungen
    • Kann man anonym mit Bitcoin bezahlen
    • Serverauswahl über die ausgelieferte OpenVPN-Konfiguration
      • Server in den Niederlanden sind abends oft stark ausgelastet
    • (Gute Erfahrungen in Lübeck)
  • Integrity VPN (Schweden, Port80)
    • Drittes Oktett durch Auswahl des normalerweise per round.robin-dns ausgewählten OpenVPN-Servers bestimmbar, das letzte Oktett ist immer gleich. Somit muss man sich keine dynamisch vergebenen IP-Adressen mit anderen teilen. Verbindungen daher durch die Anzahl der OpenVPN-Server (derzeit 3; unterschiedliche Ports nicht ausprobiert) beschränkt.
    • Hat eine überaus seriöse Webseite und eine Ltd. erfunden.™
    • Hat schon mal was von IPv6 gehört. Nutzt es zurzeit jedoch nur für SEO.
    • Blockiert Port 25 derzeit nicht.
    • Ist ein ein neuer Anbieter, der _bisher_ unausgelastet wirkt.
    • sind derzeit noch nicht nicht overselled und haben ihren Krams scheinbar halbwegs sauber konfiguriert
  • Ipredator (Schweden, Niederlande, Deutschland)
    • (Glänzen nicht durch Kompetenz, da sie lange Zeit nur PPTP angeboten haben)
    • Mögen schnelle Reconnects nicht -> manchmal muss man OpenVPN ein paar Stunden deaktivieren, bevor es wieder funktioniert.
    • Möchten bald auch IPv6 anbieten.
    • Angeblich Reseller von relakks
  • Cyberghost
    • blockt alle SMTP Ports!!
  • Perfect Privacy
  • AzireVPN


Ungetestet:

Anbindung an andere Netze

Es gibt drei relativ relevante Netzwerke bei denen es sich lohnt, das lokale Netz damit zu verbinden:

  • DN42
    • BGP
    • Experimentelles Darknet zur Erprobung von Routing-Technologien und so weiter, wird privat betrieben. Viel interessantes Zeugs™
    • Hat Routen ins ChaosVPN und IC-VPN, wer faul ist bei der Konfiguration deckt damit also alles™ ab nicht alle Routen vom IC-VPN oder ChaosVPN werden im DN42 verteilt, ob man das will kann ggf nochmal besprechen.
  • ChaosVPN
    • Tinc
    • Relativ großes „Darknet“ zwischen vielen Hackerspaces auf der ganzen Welt.


Server-Anbieter die empfehlenswert sind

  • de-punkt (Databurg, FFM)
    • Schneller Speicher, gut bezahlbar, KVM, nur Traffic-Flat™® das übliche.
  • Hetzner (Falkenstein)
    • Bezahlbarer Extratraffic 1,19 €/TB, KVM
  • colorhost (über 23media, Global Switch, FFM)
  • Untersagt Nutzung für Freifunk (http://colorhost.de/server/vserver/kvm/small/)
    • Achtung: Nur Xen oder Xen HVM funktionieren
  • xirra (Core-Backbone, NBG)
    • KVM, TB-Traffic zu 5,95€. Langweilig und funktioniert. Pflegt bisher einen guten Kontakt zu Kunden.
  • BuyVM
    • Begrenztes Angebot, das in Stößen rausgegeben wird. 2.50$/TB Extratraffic. Nur KVM ist brauchbar für diesen Zweck. USA Ost- und Südküste. TOS sagt, dass man da theoretisch kein weiteres VPN ins Netz brauchen würde.
  • webhod
    • 9,99 € für die kleinste KVM im Monat[1]


Server-Anbieter die nicht empfehlenswert sind

  • WRZhost
    • Aktivierung des V-Servers erst auf mehrfache Nachfrage, anschließend falsches Betriebssystem. Außerdem nur OpenVZ und somit nicht für FreiFunk nutzbar. Für andere Zwecke sicher brauchbar, da gut angebunden und offshore.


Dienste

B.A.T.M.A.N.

B.A.T.M.A.M. wird bei uns als Layer2 Routing-Protokoll (Ja, klingt kaputt. Ist es auch) eingesetzt, um WLAN-Mesh zu ermöglichen. Für Linux gibt es dafür das B.A.T.M.A.N. Advanced Kernel-Modul.

Die Version, die beim Kernel von Debian Stretch mit dabei ist (v2016.4) ist Compat15, was die aktuell verwendete Compat-Version ist. (siehe hier)

Wenn man möchte, kann man sich die aktuellste Version aus dem Open-Mesh Git kompilieren und installieren.

Hinweis: Wird der Kernel aktualisiert, müssen alle selbstkompilierten Kernelmodule erneut gegen die aktualisierte Kernelversion gebaut und danach installiert werden! Folglich muss ein selbstkompiliertes batman_adv nach jedem Kernelupdate neu gebaut und installiert werden. Für den Anfang empfiehlt es sich, mit dem mitgelieferten batman_adv zu arbeiten.

Das Kernel-Modul kann testweise mit folgendem Befehl geladen werden: modprobe batman-adv

Im Kernel Log sollte das Laden protokolliert werden:

~# dmesg | grep batman_adv
batman_adv: B.A.T.M.A.N. advanced 2018.0 (compatibility version 15) loaded


Das Kernelmodul von B.A.T.M.A.N. kann dann bei jedem Neustart des Systems geladen werden, indem in die Datei /etc/modules der Eintrag "batman-adv" hinzugefügt wird:

batman-adv


B.A.T.M.A.N. Advanced wird mit dem Tool batctl gesteuert. Das muss entsprechend installiert werden. Hier kann ebenfalls die Version aus den Debian Paketquellen oder die selbstkompilierte verwendet werden.

apt install batctl


FastD

Die Verbindung zwischen Gateway und zentralen Routern wird über einen fastd-Tunnel realisiert.

Die fastd-Version aus den Stretch Paketquellen ist aktuell und kann (und sollte) verwendet werden.

apt install fastd

Babel

Innerhalb von Freifunk Franken wird Babel als IP-Routingprotokoll verwendet. Damit sind alle Gateways und damit alle Hoods miteinander verbunden.

Für Linux kann babeld aus den Stretch Paketquellen als Daemon für Babel verwendet werden. apt install babeld

Auch hier gilt wieder: Die Version aus den Debian Paketquellen ist nicht super aktuell, in babeld-1.8.0 gab es einige Änderungen.
Auch babeld kann selbst kompiliert werden. Sourcen gibts hier

babeld importiert und exportiert alle Routen in/aus einer Routingtabelle. Es bietet sich an, für fff eine neue Tabelle anzulegen und zu benennen. Dazu Tabellennummer und Name in /etc/iproute2/rt_tables eintragen:

20	fff

Tunnel für den Backbone

TODO


Grundinstallation des Servers

Die Installation des Betriebssystems, Absicherung des Servers, Installieren von Updates usw. sind NICHT Gegenstand dieser Anleitung. Trotzdem kurz einige Hinweise.

Folgendes sollte unbedingt beachtet werden

  • Betriebssystem aktuell halten. Bei Linux wird dafür für gewöhnlich eine Paketverwaltung verwendet
    • Bei Debian ist das apt
    • apt update aktualisiert die Paketquellen
    • apt upgrade aktualisiert die Pakete
  • Sicherheit
    • SSH Login nur mit Keys, Login per Passwort abschalten (siehe hier
    • root-Login per SSH höchstens per Key, besser abschalten
    • Siehe hier für weitere Hinweise.

IP-Forwarding

Um Anfragen, die das Gateway erreichen, weiterzuleiten, muss IP-Forwarding aktiviert werden.

Manuell geht dies über: echo "1" > /proc/sys/net/ipv4/ip_forward

echo "1" > /proc/sys/net/ipv6/conf/default/forwarding

echo "1" > /proc/sys/net/ipv6/conf/all/forwarding

  1. Sonst landen ICMP-Fehlerpakete auf eth0 - mit source-IP 10.50.x.y...
  2. https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

echo 1 > /proc/sys/net/ipv4/icmp_errors_use_inbound_ifaddr

Dauerhaft lässt sich IP-Forwarding in /etc/sysctl.conf aktivieren: vi /etc/sysctl.conf

.. um dort die Abschnitte einzukommentieren, die das Forwarding steuern:

.
.
.
# Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

# Uncomment the next line to enable packet forwarding for IPv6
#  Enabling this option disables Stateless Address Autoconfiguration
#  based on Router Advertisements for this host
net.ipv6.conf.all.forwarding=1
.
.
.


Um ICMP-Fehlerpakete auf eth0 zu vermeiden, die als src-IP 10.50.x.y haben (böseböse!) dann noch

# Sonst landen ICMP-Fehlerpakete auf eth0 - mit source-IP 10.50.x.y...
# https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
net.ipv4.icmp_errors_use_inbound_ifaddr = 1

einfügen

Konfigurieren des Freifunk-Gateways

Nachdem nun die erforderlichen Softwarepakete auf dem Gateway installiert wurden, kann man das Gateway als solches einrichten. Die Konfiguration wird exemplarisch für das Einrichten eines GW's in der Fürther Hood beschrieben, wobei erläutert wird, welche Anpassungen für nicht-Fürther Hoods gemacht werden müssen.

IPv4 des Gateways, IP-Bereich der Hood und DHCP Range des Gateway

Das Gateway benötigt eine IP aus jedem verbundenen Layer-2 Netz.

Für jede Hoods sucht man sich dafür unter Portal:Netz bzw. Portal:Netz/IPv6 eine IPv4 bzw. IPv6 Adresse (bei IPv4 aus dem statischen Bereich) der Hood aus.
Damit es keine Doppelbelegungen gibt, muss diese auch gleich "reserviert" werden, indem das Wiki entsprechend editiert wird.

Für die Peerings verwenden wir Adressen aus einem speziell dafür vorgesehenen Bereich.
Die Adressen werden mit einer /32 Netzmaske an die Peering-Interfaces gehängt, um die entsprechenden Routen kümmert sich dann babel. So spart man sich ein paar IPv4 Adressen, da nicht immer ein /31 Subnetz für ein Peering drauf geht und (wenn auch unsauber) für jedes Peeringinterface die gleiche Adresse genutzt werden kann.
Bei IPv6 genügen die Link-Local Adressen.

Möchte man auf seinem Gateway Dienste unabhängig von den Hoods anbieten, kann dafür die Peering-IP (für IPv6 ist daher ebenfalls ein Bereich dafür vorgesehen) gut verwendet werden.

An dieser Stelle sollte man sich unbedingt mit Subnetzen und der CIDR-Notation vertraut machen, falls einem das (noch) Fremdworte sind.
Ein entsprechender IP-Rechner findet sich z.B. hier.


Für die Hoods muss bei IPv4 noch ein Bereich festgelegt werden, aus dem dann später Adressen verteilt werden. Dieser muss:

  • innerhalb des Subnetzes der Hood liegen.
  • innerhalb der Hood eindeutig sein. (Darf sich nicht mit dem Adressbereich überschneiden, den andere DHCP Server in der Hood verwalten)
  • vollständig außerhalb des statischen Bereichs der Hood liegen.

Gleichzeitig teilt der DHCP-Server den Clients mit, welchen DNS-Server und welches Default-Gateway die Clients verwenden sollen. Die Gesamtgröße aller verwalteten DHCP-Bereiche des Servers hat so direkten Einfluss auf die Arbeitslast, die der den Clients zugeteilte DNS-Server und der zugeteilte Internet-Gateway später sehen.

Bei IPv6 wird nur Gateway, DNS-Server und Subnetz per Router Advertisement in der Hood bekannt gemacht, den Rest erledigen die Clients.

Routing Tabelle für Freifunk

Für die Routen im Freifunk Franken Netz sollte eine eigene Routingtabelle deklariert werden.

Dazu Tabellennummer und Name in /etc/iproute2/rt_tables eintragen:

20     fff

Der Inhalt der Routingtabelle kann später mit ip route show table fff angezeigt werden.

fastd

fastd wird komplett anders als früher konfiguriert. Das früher nötige Verwaltungsscript darf KEINESFALLS(!!) ausgeführt werden, auch der Cronjob ist nicht mehr nötig. Falls die IP noch im alten KeyXchange eingetragen ist, sollte sie hieraus unbedingt entfernt werden (KeyXchange Admin fragen) Bitte nur noch folgende Anleitung folgen:

/etc/fastd/ffffuerthVPN/fastd.conf

# Log errors to stderr
log level error;

# Log warnings to a log file
log to syslog as "ffffuerthVPN" level warn;

# Set the interface name
interface "ffffuerthVPN";

# Disable encryption
method "null";

# Bind to a fixed port, IPv4 only
bind any:10004;

# fastd need a key but we don't use them: generate by "fastd --generate-key"
secret "c00a286249ef5dc5506945f8a3b413c0928850214661aab866715203b4f2e86a";

# Set the interface MTU for TAP mode with xsalsa20/aes128 over IPv4 with a base MTU of 1492 (PPPoE)
# (see MTU selection documentation)
mtu 1426;

on up "/etc/fastd/up.sh";
on post-down "/etc/fastd/down.sh";

secure handshakes no;

on verify "/etc/fastd/verify.sh";


/etc/fastd/down.sh

#!/bin/sh
/sbin/ifdown $INTERFACE


/etc/fastd/up.sh

#!/bin/sh
/sbin/ifup $INTERFACE


/etc/fastd/verify.sh

#!/bin/sh
return 0


danach:

systemctl enable fastd
systemctl start fastd


Gateways untereinander verbinden

Die Gateways sollten sich im Hood-Layer2 auch noch untereinander verbinden, das ist aktuell noch nicht umgesetzt. Eventuell ist dies doch nicht nötig

B.A.T.M.A.N Netzwerk-Interface, fff Routingregeln und -tabelle

Hinweis: Wenn man für einige nette Dinge um das B.A.T.M.A.N Netzwerk-Interface eine Bridge haben möchte gibt es unter Freifunk-Gateway aufsetzen/Batman bridge eine entsprechende Anleitung.

In der Datei /etc/network/interfaces ...

vi /etc/network/interfaces

fügen wir zunächst folgenden Textblock des Gateways "klee" aus der Fürther Hood an:

.
.
.
# device: bat0
iface bat0 inet manual
post-up ifconfig $IFACE up
    ##Einschalten post-up:
    # IP des Gateways am B.A.T.M.A.N interface:
    post-up ip addr add 10.50.32.5/21 dev $IFACE
    # Regeln, wann die fff Routing-Tabelle benutzt werden soll: 
    post-up ip rule add iif $IFACE table fff
    post-up ip rule add from 10.0.0.0/8 table fff	
    post-up ip rule add to 10.0.0.0/8  table fff
    # Route in die Fuerther Hood:	
    post-up ip route replace 10.50.32.0/21 dev $IFACE proto static table fff
    # Start des DHCP Servers:
    post-up invoke-rc.d isc-dhcp-server restart

    ##Ausschalten post-down:
    # Loeschen von oben definieren Routen, Regeln und Interface: 
    post-down ip route del 10.50.32.0/21 dev $IFACE table fff
    post-down ip rule del from 10.0.0.0/8 table fff
    post-down ip rule del to 10.0.0.0/8 table fff
    post-down ip rule del iif $IFACE table fff
    post-down ifconfig $IFACE down

# VPN Verbindung in die Fuerther Hood
iface ffffuerthVPN inet manual
    post-up batctl -m bat0 if add $IFACE
    post-up ifconfig $IFACE up
    post-up ifup bat0
    post-down ifdown bat0
    post-down ifconfig $IFACE down

In diesem Beispiel sind:

  • IP des Gateway/Netzmaske der Fürther Hood: 10.50.32.5/21
  • IP des Netzwerks Fürther Hood / Netzmaske der Fürther Hood: 10.50.32.0/21.

Diese müssen gegen die oben reservierte IP/Netzmaske des Gateways der Hood und gegen die Netzwerk-IP/Netzmaske der Hood, in die das neue Gateway soll, ausgetauscht werden.

Der Eintrag "ip route add 10.50.32.0/21 dev $IFACE table fff" fügt in der fff Routingtabelle eine Route in das Netzwerk "Fürther Hood" ein. Für Hassberge müsste dieser Eintrag z.B. in 10.50.56.0/22 geändert und für die IP-Adresse des Gateways eine aus dem statischen Bereich der Hassberger Hood reserviert und verwendet werden (s.o.).

Die Regeln definieren, das Traffic der

  • aus dem Netzwerk 10.0.0.0/8 kommt
  • das Netzwerk 10.0.0.0/8 zum Ziel hat
  • oder über die B.A.T.M.A.N Schnittstelle übermittelt wird

von der fff Routingtabelle behandelt wird. Die Einträge sind so allgemein formuliert, dass sie für das gesamte Freifunk Franken Netz Gültigkeit haben sollten.

Im post-down Abschnitt werden die vorher definierten Regeln, Interfaces und Routen wieder gelöscht.

Hinweis: Die MTU darf nicht verstellt (vergrößert) werden, diesbezügliche Laufzeitmeldungen von batman_adv bitte ignorieren!


Testen von B.A.T.M.A.N, fastd und Autostart

Hierfür booten wir das Gateway am besten erst mal neu: reboot & exit und starten das fast.d Startskript manuell: /etc/fastd/fff_beispiel_fastd.sh & Beim Erststart werden Schlüsselpaare generiert und ausgetauscht, es kann also etwas dauern.

Danach sollte der Aufruf von... pgrep fastd ... mit der Prozess-ID beantwortet werden: Fastd läuft in dem Fall.


Ein Aufruf von ifconfig: ifconfig

sollte die neu erstellten Interfaces bat0 und ffffuerthVPN zurückliefern. Exemplarisch und als Auszug:

bat0      Link encap:Ethernet  HWaddr ea:95:50:07:f7:27  
          inet addr:10.50.32.5  Bcast:0.0.0.0  Mask:255.255.248.0
          inet6 addr: fe80::e895:50ff:fe07:f727/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:1089992 errors:0 dropped:0 overruns:0 frame:0
          TX packets:849698 errors:0 dropped:1728 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:141311612 (134.7 MiB)  TX bytes:1052934594 (1004.1 MiB)

.
.
.
ffffuerthVPN Link encap:Ethernet  HWaddr e6:3b:f3:b7:fc:db  
          inet6 addr: fe80::e43b:f3ff:feb7:fcdb/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1426  Metric:1
          RX packets:32389694 errors:0 dropped:0 overruns:0 frame:0
          TX packets:2699525 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:500 
          RX bytes:4193328694 (3.9 GiB)  TX bytes:1384843740 (1.2 GiB)
.
.
.

Aus dem ifconfig Auszug für bat0 sollte die eingerichtete IP des Gateways und die Netzmaske hervorgehen. + IPv6


Die Abfrage der IP-Regeln: ip rule

sollte die oben definierten Regeln wieder spiegeln (fff Tabelle für Traffic, der entweder über bat0 oder 10.0.0.0/8 rein- oder rausgeht):

32757:	from all to 10.0.0.0/8 lookup fff 
32758:	from 10.0.0.0/8 lookup fff 
32759:	from all iif bat0 lookup fff 

Eine Abfrage der fff-Routing Tabelle ip route show table fff

sollte die B.A.T.M.A.N Route (Device bat0) in das Netzwerk der eingerichtete Hood ergeben. In diesem Beispiel ist es die Fürther Hood:

10.50.32.0/21 dev bat0  scope link

ganze IPv6 Zeug fehlt noch

Ein Aufruf von "batctl o" batctl o

ergibt eine Liste der MAC-Adressen von unseren nächsten Nachbarn. Exemplarisch und als Auszug:

[B.A.T.M.A.N. adv 2013.4.0, MainIF/MAC: ffffuerthVPN/e6:3b:f3:b7:fc:db (bat0)]
  Originator      last-seen (#/255)           Nexthop [outgoingIF]:   Potential nexthops ...
96:43:c4:2e:73:68    0.004s   (255) 96:43:c4:2e:73:68 [ffffuerthVPN]: 96:43:c4:2e:73:68 (255)
.
.
.

Auf neues Batman updaten (Versionsanzeiger)

Hat soweit alles geklappt, kann das Startscript /etc/fastd/fff_beispiel_fastd.sh bei jedem Systemstart ausgeführt werden, indem es z.B. in /etc/rc.local eingetragen wird: vi /etc/rc.local Hier spendieren wir einen Eintrag, der fastd mit 10 Sekunden Verzögerung bei jedem Systemstart mitstartet:

# launch fastd with 10 seconds delay
(sleep 10; sh /etc/fastd/fff_beispiel_fastd.sh) &

Zusätzlich muss ein Cronjob angelegt werden, der das Skript z.B. alle 10 Minuten ausführt: crontab -e Nun folgendes eingeben:

*/5 * * * * sleep 10; sh /etc/fastd/fff_beispiel_fastd.sh

und /etc/init.d/cron restart

radvd

Damit radvd nicht die fe80::1 als Source-IP verwendet (geht ziemlich kaputt), muss mindestens Version 2.16 installiert sein. Das kann man so überprüfen:

radvd -v


In den Debian 9 Packetquellen wird leider noch 2.15 ausgeliefert. Man kann radvd aber aus Debian 10 (aktuell testing) backporten.

Damit nicht alle Pakete auf die buster-Version aktualisiert werden:

/etc/apt/preferences.d/limit-buster

Package: *
Pin: release n=buster
Pin-Priority: 150


Dann die buster Packetquellen einfügen:

/etc/apt/sources.d/buster.list

deb http://ftp.de.debian.org/debian/ buster main


Und radvd installieren:

apt-get update
apt-get -t buster install radvd


radvd muss dann in jeder Hood Router Advertisements senden und die entsprechende ULA als Autonomous Prefix announcen:

/etc/radvd.conf

interface bat0 { 
        AdvSendAdvert on;
	AdvDefaultLifetime 0;
        AdvRASrcAddress {
                fe80::IRGENDWAS;
        };
        prefix fd43:5602:29bd:x::/64 { 
                AdvOnLink on; 
                AdvAutonomous on; 
        };
        route fc00::/7 {
        };
};


ACHTUNG: Die fe80:: die bei AdvRASrcAddress eingetragen ist muss fest an das batX Interface gebunden werden. (siehe interface-config oben). Die Adresse zufällig zu generieren bietet sich an, damit die Adressen in jeder Hood eindeutig sind.


AdvRASrcAddress ist nötig, damit die Router Advertisements nicht von der fe80::1 gesendet werden. Denn wenn zwei Gateways verschiedene Router Advertisements von der gleichen Link Local Adresse senden, sind die Clients verwirrt und es kommt unter Umständen zu einer instabilen Verbindung.

systemctl restart radvd

ntp Server

Es werden routbare v6 Adressen aus den ULA Bereich verwendet. Jede Hood kann, muss aber nicht einen eigenen ntp Server bereit stellen. Aktuell sind folgende NTP Server in Betrieb und können verwendet werden:

  • fd43:5602:29bd:ffff::1
  • fd43:5602:29bd:7d::2
  • fd43:5602:29bd:ffff::42

http

Es wird ein http Server benötigt, der auf Port 2342 das Hoodfile ausliefert.

Dieser Schritt sollte erst ausgeführt werden, wenn der Server im KeyXchange eingetragen ist. Sonst erhält man das Hoodfile einer falschen Hood (die richtige ist ja nicht eingetragen) und verteilt dieses u.U. weiter (= Bumm, nicht gut)! Auch ein manuelles Herunterladen ohne Cronjob hat diesen Effekt.

Das aktuellste Hoodfile kann vom keyxchangev2 bezogen werden und muss regelmäßig (Cronjob, alle 5 Minuten) auf dem Gateway aktualisiert werden.

Cronjob:

*/5 * * * * wget "http://keyserver.freifunk-franken.de/v2/index.php?lat=49.4814&long=10.966" -O /var/www/fuerth/keyxchangev2data


Achtung, da die Hoodfile auf allen Gateways exakt identisch sein muss, darf sie keinesfalls verändert werden (z.b. formatieren oder Zeichen hinzufügen o.ä.).

Die Router beziehen die Datei wechselseitig von verschiedenen Quellen (KeyXchange, Gateways, etc.). Unterscheidet sich die Checksumme, wird hier jeweils neu umkonfiguriert, was bei verschiedenen Files auf zwei GWs dann gerne mal alle 5 Minuten passiert und das Netz lokal kaputt macht.

Koordinaten und Pfad müssen für jede Hood angepasst werden: http://keyserver.freifunk-franken.de/v2/hoods.php

Mehr Details zum Hood file: Hood file

Für mehrere Hoods

Man benötigt einen Webserver, der (für die gleiche Adresse) für verschiedene Interfaces verschiedene Dateien ausliefern kann.

Am einfachsten ist das zu realisieren, indem man den Webserver auf mehreren Ports lauschen lässt und aus und Pakete vom jeweiligen batX Port 2342 auf den jeweiligen Port redirected.

Beispiel nginx:

~# cat /etc/nginx/sites-enabled/nuernberg
server {
	listen [::]:2001;
	root /var/www/fuerth;
}

Für weitere Hoods analog.

Beispiel Apache:

~# cat /etc/apache2/ports.conf
Listen 2001
Listen 2002
.
.

~# cat /etc/apache2/sites-available/bat.conf:
<VirtualHost *:2001>
        ServerAdmin webmaster@localhost
        DocumentRoot /var/www/fuerth
        ErrorLog ${APACHE_LOG_DIR}/error.log
        CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

<VirtualHost *:2002>
        ServerAdmin webmaster@localhost
        DocumentRoot /var/www/nuernberg
        ErrorLog ${APACHE_LOG_DIR}/error.log
        CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>
.
.

~# a2ensite bat


Und dann braucht man noch die entsprechenden Redirects. Diese müssen entweder mit iptables-persistent reboot-safe gemacht werden oder irgendwie anders zuverlässig beim Serverstart eingetragen werden (z.B. an die batX interface-config anhängen)

ip6tables -t nat -A PREROUTING -i bat0 -p tcp -d fe80::1 --dport 2342 -j REDIRECT --to-port 2001
ip6tables -t nat -A PREROUTING -i bat1 -p tcp -d fe80::1 --dport 2342 -j REDIRECT --to-port 2002
ip6tables -t nat -A PREROUTING -i bat2 -p tcp -d fe80::1 --dport 2342 -j REDIRECT --to-port 2003

Bonus

Es sollte noch in jedem Hood-Verzeichnis ein File "gateway" mit dem Servernamen (z.B. "fff-hof-gw3") liegen. So kann man beim Debuggen gleich sehen, welcher Server hier lauscht.

Alfred Master aufsetzen

Die Nodewatcher Daten aus dem Alfred werden nicht mehr von einer zentralen VM ans Monitoring geschickt. Das übernehmen jetzt die Gateways.

Alfred

Das Gateway muss die Daten zuerst als sogenannter Alfred-Master sammeln. Dazu muss "alfred" installiert werden. (Entweder aus den Distributionsquellen oder selbst kompilieren, funktioniert analog zum batman-adv (siehe oben))

Dann muss pro bedienter Hood (also für jedes batX Interface) ein Alfred master gestartet werden (beispielsweise mit in die Interfacekonfiguration oder wie unten als systemd-Service ...):

~# cat /etc/systemd/system/alfred-bayreuth.service 
[Unit]
Description=Alfred Master
After=network-online.target

[Service]
Type=simple
ExecStart=/usr/sbin/alfred -m -i br-bayreuth -b bat2 -u /var/run/alfred-bayreuth.sock
WorkingDirectory=/tmp
RestartSec=10
Restart=always

[Install]
WantedBy=multi-user.target

Alfred Monitoring Proxy

Die gesammelten Daten müssen nun noch periodisch an das Monitoring gesendet werden.

Dazu kann alfred-json von kratz00 (https://github.com/kratz00/alfred-json) in Kombination mit einem passenden curl-Skript verwenden werden. Zunächst muss alfred-json kompiliert werden (siehe README).

Danach noch das curl-Script anlegen (auf eigenes Zeug anpassen! Pfade der inneren for-loop über die Sockets prüfen!):

~# cat /usr/sbin/alfred-monitoring-proxy
#!/bin/bash

api_url="https://monitoring.freifunk-franken.de/api/alfred"
fetch_ids="64"

for fetch_id in $fetch_ids
do
	for socket in /var/run/alfred-*.sock
	do
		tmp=$(mktemp)

		echo "{\"$fetch_id\": " > $tmp
		alfred-json -r "$fetch_id" -s "$socket" >> $tmp
		echo "}" >> $tmp

		if [ "$zip" = "1" ]; then
			gzip $tmp
			tmp="$tmp.gz"
			HEADER='-H "Content-Encoding: gzip" --compressed'
		fi

		curl -v -H "Content-type: application/json; charset=UTF-8" $HEADER --data-binary @$tmp $api_url

		rm "$tmp"
	done
done


Und einen passenden Cronjob dafür anlegen:

1-59/5 * * * *  sleep 9; /usr/sbin/alfred-monitoring-proxy

WICHTIG: Bitte im nächsten Abschnitt den optimalen Zeitpunkt für das senden bestimmen!

Wahl des korrekten Delays (sleep)

Das Zusammenspiel zwischen nodewatcher, Alfred und Monitoring ist komplex. Entsprechend gibt es mehr und weniger sinnvolle Zeiten, wann der Alfred Master seine Daten an das Monitoring sendet. Die folgende Tabelle soll bei der Wahl eines geeigneten Delays behilflich sein.

Anstatt eines fixen Delays ist auch eine Variante mit random möglich. Die Grenzen sollten dabei die angegebenen Bereiche nicht verlassen!

WICHTIG: Sind mehrere Alfred Master in einer Hood sollten diese ihre Daten nie gleichzeitig schicken! (Empfohlener Abstand min. 5 sec.)


Wartezeit nach Erreichen von */5 Kommentar
0 - 50 sec. Reservierter Zeitslot (nodewatcher)
  • In dieser Zeit generiert der nodewatcher die Daten und verschickt diese per Alfred.
  • Findet die Anfrage in diesem Zeitraum statt, werden die Daten von 5 Minuten zuvor verwendet.
50 - 85 sec. Empfohlener Zeitslot
  • Optimal zwischen 65 und 80 sec.
85 - 120 sec. Reservierter Zeitslot (Netmon-VM)
  • Bei einer anderen Anfrage sollten keine Fehler auftreten, aber die Last wird unnötig erhöht
120 - 175 sec. Möglicher Zeitslot
  • Die Daten werden noch rechtzeitig für die Statistiken geliefert
  • Die Routerdaten selbst sind weniger aktuell im Vergleich zum empfohlenen Slot
175 - 185 sec. Reservierter Zeitslot (Erstellung der Statistiken)
  • Findet hier eine Anfrage statt kann es gelegentlich zu Fehlern kommen
185 - 300 sec. Freier Zeitslot
  • Die Daten werden NACH Erstellung der Statistiken geliefert und müssen entsprechend lange warten
  • Optimal ist dieser Zeitslot für den zweiten Alfred Master einer Hood, sodass der Abstand zwischen den Anfragen etwa gleich ist (=> effektives Update alle 2.5 Minuten)
  • Ein Setzen auf nahe 300 Sekunden sollte vermieden werden

Tipps:

Handelt es sich um mehr als eine Minute Delay, kann die Cron Syntax ausgenutzt werden:

1-59/5 * * * * Befehl


Das löst dann 00:01, 00:06, 00:11 usw. aus, also im beginnend bei 1 bis 59 in 5-er Schritten

2-59/5 * * * * Befehl


Das löst dann 00:02, 00:07, 00:12 usw. aus, also im beginnend bei 2 bis 59 in 5-er Schritten. In Kombination mit sleep gibt es also für 130 Sekunden folgende Lösungen:

*/5 * * * * sleep 130; Befehl


oder besser:

2-59/5 * * * * sleep 10; Befehl

Zwei Minuten plus 10 Sekunden sind 130 Sekunden, aber man vermeidet den langen Sleep.

OpenVPN-Tunnel einrichten

Die Einrichtung eines OpenVPN Tunnels kann von Anbieter zu Anbieter variieren. Im Laufe der Zeit sollte die Dokumentation so um funktionierende Konfigurationen verschiedener Anbieter erweitert werden.

Mullvad

Unter https://mullvad.net/download/config/ Reiter "Other platforms" kann man sich die mullvadconfig_xx.zip runterladen.

Mullvad liefert in dieser Datei, die notwendigen Schlüssel (ca.crt, mullvad.crt, mullvad.key) als auch eine Konfigurationsdatei (mullvad_linux.conf) mit, die später angepasst werden muss.

Man kopiert nun die zip-Datei auf das Gateway, entpackt sié und kopiert das Kundenummern-Verzeichnis mit dem Dateien ca.crt, crl.pem, mullvad.crt, mullvad.key, mullvad_linux.conf nach /etc/openvpn:

Von dem lokalen Rechner kopieren wir die zip Datei per scp für Windows oder Linux auf das Gateway.

Als unverbindliche Richtschnur für Linux: scp mullvadconfig.zip root@<ipv4 des Gateways>:/root

Danach loggen wir uns auf dem Gateway ein und entpacken die Datei (nicht vergessen unzip zu installieren): ssh root@<ipv4 des Gateways>

unzip mullvadconfig.zip

cd <Kundennummernverzeichnis>

cp * /etc/openvpn

/etc/openvpn/ sollte mit dem Inhalt des entpackten mullvadconfig.zip Archivs dann so aussehen:

ca.crt	crl.pem  mullvad.crt  mullvad.key  mullvad_linux.conf  mullvad_windows.conf.ovpn  update-resolv-conf

Wichtiger Hinweis: Wer sich nicht von seinem Gateway aussperren möchte, sollte so lange den Rechner nicht neu starten, wie die openvpn Konfiguration nicht wie unten angepasst wurde. Wenn es doch passiert, ist evtl. noch ein Zugriff auf das Gateway über die hoster-Konsole möglich.

Wir legen ein benutzerspezifisches start-up Script namens mullvad-up an: vi /etc/openvpn/mullvad-up

und füllen sie mit folgendem Inhalt:

#!/bin/bash
logger -t OPENVPN VPN Gateway: /sbin/ip route replace default via ${route_vpn_gateway} dev ${dev} proto static table fff
/sbin/ip route replace default via ${route_vpn_gateway} dev ${dev} proto static table fff
iptables -t nat -A POSTROUTING -o ${dev} -j MASQUERADE

Das Skript definiert in der fff-Routingtabelle zunächst den VPN Anbieter als Standard-Gateway ("/sbin/ip route add default via ${route_vpn_gateway} dev ${dev} table fff"). D.h. Traffic, der über das Freifunk-Netz hereinkommt (Definiert über die fff IP rules) und für den keine anderweitigen Routinginformationen bekannt sind (z.B. Internet Traffic), wird pauschal in Richtung des VPN Gateways geschickt (IP ${route_vpn_gateway}, Device ${dev}). Das Default-Gateway für Traffic, der nicht freifunkbezogen ist, bleibt unangetastet, um sich nicht selber auszusperren. Da wir Anfragen vieler Clients (verschiedene IPs) über eine VPN IP schieben, müssen wir darüber hinaus "Network Adress Translation" (NAT) betreiben ("iptables -t nat -A POSTROUTING -o ${dev} -j MASQUERADE"). Dies ist auch erforderlich, da der Freifunk IPv4 Adressbereich 10.0.0.0/8 für lokale Netze reserviert ist und nicht im Internet geroutet wird.

Das Skript mullvad-up muss ferner ausführbar sein: chmod +x /etc/openvpn/mullvad-up

Dieses spezifische Routing muss zwingend in mullvad_linux.conf eingepflegt werden: vi /etc/openvpn/mullvad_linux.conf

und hier die Konfiguration entsprechend geändert werden:

.
.
.
# Allow calling of built-in executables and user-defined scripts.
script-security 2

# Parses DHCP options from openvpn to update resolv.conf
#up /etc/openvpn/update-resolv-conf
#down /etc/openvpn/update-resolv-conf

# Enable Freifunk specific Routing
route-noexec
route-delay 3
route-up    /etc/openvpn/mullvad-up
.
.
.

Script security muss auf "2" stehen, damit benutzerspezifische Skripte ausgeführt werden dürfen. Unser Freifunk spezifisches Routing wird über "route-up /etc/openvpn/mullvad-up" ausgeführt, wobei wir vorher openvpn mit "route-noexec" verbieten, automatisch selber Routen anzulegen. Aus Sicherheitsgründen führen wir einen kleinen Zeitpuffer von 3 Sekunden ein ("route-delay 3"). Vorhandene Start/Stop-Skripte (up/down) sollten auskommentiert werden.

Wer möchte, kann in mullvad_linux.conf auch Länder definieren, über die der VPN Traffic laufen soll (Ein- /Auskommentieren).

Der openvpn Tunnel kann nun testweise gestartet werden: cd /etc/openvpn

/usr/sbin/openvpn mullvad_linux.conf &

und sollte exemplarisch und im Auszug folgendes zurück liefern:

Sun Sep  6 12:45:20 2015 OpenVPN 2.3.4 x86_64-pc-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [MH] [IPv6] built on Dec  1 2014
Sun Sep  6 12:45:20 2015 library versions: OpenSSL 1.0.1k 8 Jan 2015, LZO 2.08
Sun Sep  6 12:45:20 2015 NOTE: the current --script-security setting may allow this configuration to call user-defined scripts
.
.
.
Sun Sep  6 12:45:23 2015 /sbin/ip link set dev tun0 up mtu 1500
Sun Sep  6 12:45:23 2015 /sbin/ip addr add dev tun0 10.114.0.45/16 broadcast 10.114.255.255
Sun Sep  6 12:45:23 2015 /sbin/ip -6 addr add fdef:e287:a479:72::102b/112 dev tun0
Sun Sep  6 12:45:23 2015 /etc/openvpn/mullvad-up tun0 1500 1558 10.114.0.45 255.255.0.0 init
Sun Sep  6 12:45:23 2015 Initialization Sequence Completed

Wichtig ist hierbei, dass in der vorletztes Zeile unser Freifunk-spezifisches Routing durchgeführt wird.

Das VPN-Gateway sollte nun als Default Route in der fff-Routingtabelle auftauchen: ip route show table fff | grep default

Exemplarisch wäre eine Ausgabe für das Tunnel-Device tun0 und dem VPN-Gateway 10.114.0.1:

default via 10.114.0.1 dev tun0

Auch ein ifconfig Eintrag für das Tunnel Device... ifconfig

...sollte jetzt existieren (Exemplarisch und im Auszug):

.
.
.
tun0      Link encap:UNSPEC  HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00  
          inet addr:10.114.0.76  P-t-P:10.114.0.76  Mask:255.255.0.0
          inet6 addr: fdad:bdef:735d:72::104a/112 Scope:Global
          UP POINTOPOINT RUNNING NOARP MULTICAST  MTU:1500  Metric:1
          RX packets:1012476 errors:0 dropped:0 overruns:0 frame:0
          TX packets:640206 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:100 
          RX bytes:1250196616 (1.1 GiB)  TX bytes:84979294 (81.0 MiB)
.
.
.


Wenn alles geklappt hat, kann man (sofern openvpn nicht korrekt beim Systemstart geladen wird), den openvpn Tunnel in der /etc/rc.local bei jedem Systemstart laden: vi /etc/rc.local

und dort z.B. ein zeitverzögertes Starten nach 5 Sekunden vereinbaren:

# launch vpn with 5 seconds delay
(sleep 5; /usr/sbin/openvpn /etc/openvpn/mullvad_linux.conf >> /var/log/mullvad_vpn.log &) &


NordVPN

NordVPN liefert die Datei config.zip mit, die für jeden verwendbaren VPN-Server eine seperate Konfigurationsdatei enthält.

Hinweis: Auch hier gilt - Wer sich nicht ungewollt von seinem Gateway aussperren möchte, muss vor dem Starten von OpenVPN und vor einem neuen Reboot die Konfigurationsdatei anpassen.

Von dem lokalen Rechner kopieren wir die zip Datei per scp für Windows oder Linux auf das Gateway.

Als unverbindliche Richtschnur für Linux: scp config.zip root@<ipv4 des Gateways>:/root

Und entpacken diese auf dem Gateway: cd ~

mkdir nordvpn-configs

mv config.zip nordvpn-configs

cd nordvpn-configs

unzip config.zip

Danach wählen wir einen VPN Server aus, z.B. unter dem Gesichtspunkt das er wenige Hops vom Gateway entfernt ist und/oder in einem Land unserer Wahl steht.

Im Beispiel nehmen wir se1.nordvpn.com.udp1194.ovpn und passen Sie zunächst Freifunk-spezifisch an (siehe Aussperr-Hinweis oben):

vi se1.nordvpn.com.udp1194.ovpn

Änhlich wie bei Mullvad, bestimmen wir dass wir das Routing mit einem eigenen Skript festlegen wollen (/etc/openvpn/nordvpn-up) und openvpn die Route nicht selber definieren soll. Zusätzlich geben wir eine Datei an, in die wir später Password und Benutzername des NordVPN Zugangs (/etc/openvpn/nordvpn-pw) ablegen:

.
.
.
# Provide Username and Password
auth-user-pass /etc/openvpn/nordvpn-pw
.
.
.
# Allow calling of built-in executables and user-defined scripts.
script-security 2

# Enable Freifunk specific Routing
route-noexec
route-delay 3
route-up    /etc/openvpn/nordvpn-up
.
.
.

Die angepasste Datei (im Beispiel se1.nordvpn.com.udp1194.ovpn) kopieren wir nach /etc/openvpn und spendieren Ihr gleichzeitig die Endung .conf, damit der Autostart Mechanismus die Konfigurationsdatei als solche erkennt: cp se1.nordvpn.com.udp1194.ovpn /etc/openvpn/se1.nordvpn.com.udp1194.ovpn.conf

Hier legen wir noch unser Freifunk Startskript und unsere Password Datei an und machen das Skript ausführbar: touch /etc/openvpn/nordvpn-up

touch /etc/openvpn/nordvpn-pw

chmod +x /etc/openvpn/nordvpn-up

Man öffnet nordvpn-up... vi /etc/openvpn/nordvpn-up

und füllt die Datei mit identischem Inhalt wie mullvad-up. Bei Interesse stehen weitere Hinweise bei mullvad (Network Adress Translation, Default Gateway für Freifunk Traffic):

#!/bin/bash
logger -t OPENVPN VPN Gateway: /sbin/ip route replace default via ${route_vpn_gateway} dev ${dev} proto static table fff
/sbin/ip route replace default via ${route_vpn_gateway} dev ${dev} proto static table fff
iptables -t nat -A POSTROUTING -o ${dev} -j MASQUERADE

Nun öffnet man nordvpn-pw: vi /etc/openvpn/nordvpn-pw

Und legt in der ersten Zeile der Datei seinen NordVPN Usernamen und in der zweiten Zeile sein NordVPN Passwort ab:

(Username bei NordVPN)
(Password bei NordVPN)

Der Tunnel kann nun testweise gestartet werden (hier im Beispiel mit der Konfigurationsdatei se1.nordvpn.com.udp1194.ovpn) openvpn /etc/openvpn/se1.nordvpn.com.udp1194.ovpn.conf &

Und sollte aufgebaut werden:

Sun Sep 27 09:07:13 2015 OpenVPN 2.3.2 x86_64-pc-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [eurephia] [MH] [IPv6] built on Dec  1 2014
.
.
.
Sun Sep 27 09:07:15 2015 /sbin/ip link set dev tun0 up mtu 1500
Sun Sep 27 09:07:15 2015 /sbin/ip addr add dev tun0 local 10.8.8.226 peer 10.8.8.225
Sun Sep 27 09:07:18 2015 Initialization Sequence Completed

Wenn alles geklappt hat, kann man (sofern openvpn nicht korrekt beim Systemstart geladen wird), den openvpn Tunnel in der /etc/rc.local bei jedem Systemstart laden: vi /etc/rc.local

und dort z.B. ein zeitverzögertes Starten nach 5 Sekunden vereinbaren:

# launch vpn with 5 seconds delay
(sleep 5; cd /etc/openvpn ; /usr/sbin/openvpn se1.nordvpn.com.udp1194.ovpn.conf >> /var/log/nordvpn.log &) &

Die Beispiel-Konfigurationsdatei (se1.nordvpn.com.udp1194.ovpn.conf) muss entsprechend angepasst werden.

DNS Server

In der einfachsten Konfiguration betreiben wir den DNS Server als Caching Nameserver, d.h. alle Anfragen Domainnames in IP Adressen zu wandeln, die schon mal durch den Server gelaufen sind, werden selber beantwortet. Ansonsten wird ein anderer DNS-Server aus dem Freifunk-Netz oder dem Internet angefragt.


ACHTUNG! Freifunk Franken hat nun sein eigenes DNS System. Damit dies von überall funktioniert bitte diese Seite beachten.


Hierfür editieren wir die Datei named.conf.options... vi /etc/bind/named.conf.options

...und tragen die DNS Server, die wir anfragen wollen, wenn wir die Information nicht selber haben, als forwarders ein:

.
.
.
forwarders  {
              10.83.252.11;
              10.50.252.0;
            };
allow-query { 
              127.0.0.1/8; 
              10.0.0.0/8; 
            };
.
.
.	

Darüber hinaus ist es sinnvoll, nur Anfragen zu beantworten, die das Gateway selber stellt (localhost; 127.0.0.1/8) oder die aus dem Freifunk Netz kommen (10.0.0.0/8). Der zugehörige Parameter heißt "allow-query".

Neustart des DNS-Servers mit der neuen Konfiguration: /etc/init.d/bind9 restart

Testen können wir, indem wir vom DNS Server des Gateways (localhost/127.0.0.1) eine DNS-Auflösung abfragen.

Ein DNS Resolve für freifunk-franken.de ... dig @127.0.0.1 freifunk-franken.de

...sollte von uns selber (Server localhost; 127.0.0.1) beantwortet werden:

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5819
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 13, ADDITIONAL: 1 
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:
;freifunk-franken.de. IN A
;; ANSWER SECTION:
freifunk-franken.de. 3599 IN A 31.172.113.113	
.
. 
.
;; Query time: 117 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Tue Sep 08 14:16:32 EEST 2015
;; MSG SIZE  rcvd: 275


B.A.T.M.A.N Gateway Selection

ACHTUNG: Dieses Script sollte erst aktiviert werden wenn sicher feststeht das:

  • Babel alle Routen übertragen hat, "ip r s table fff" gibt viele routen zu 10.x.x.x und 172.x.x.x aus
  • Der Server als Gateway in den KeyXchange eingetragen ist (muss man wissen, falls unbekannt bitte an die dev Liste fragen oder einen KeyXChange Admin)
  • Ein funktionierender DHCP Server läuft

Man sich also prinzipiell sicher ist, das der Server komplett fertig ist. Dies sollte der allerletzte Schritt sein wenn der Server eigentlich schon Online ist.

Wird das Script vorher aktiviert, announced man sich im Batman als Gateway obwohl man keine IPs vergibt (oder nicht richtig routet). Dies führt dazu das Clients keine IPs oder kein Routing ins Freifunknetz bekommen was sehr unschön ist.

Ab Version 0.5.1 der Router Firmware ist die B.A.T.M.A.N Gateway Selection aktiviert worden. Der Router wählt sein bevorzugtes Gateway anhand der Verbindungsqualität und dessen noch verfügbaren Bandbreite aus und selektiert das GW für die Clients vor.

Die noch verfügbare Bandbreite muss vom Gateway an die Router annonciert werden. Hierfür muss man vorab die maximal zur Verfügung stehende Up- und Downloadkapazität des Gateways festlegen. Dies kann z.B. unter folgenden Gesichtspunkten geschehen:

  • Bandbreite der Netzanbindung (z.B. 100 Mbit/sec, gesplittet in 50 Mbit/sec up/down)
  • Freier Traffic des Hosters (z.B.: 5 TByte/Monat, entspricht einer Grundlast von 15 Mbit/sec, z.B. gesplittet in 5 Mbit/sec down, 10 Mbit/sec up)
  • Erfahrungswerten / eigenes Ermessen
  • Bandbreite, bei dem der Gateway Prozessor ausgelastet ist

Eventuell muss zuerst bc nachinstalliert werden, falls nicht vorhanden: apt-get install bc

Wir sollten nur die Bandbreite annoncieren, die tatsächlich noch frei ist: Also unsere Gesamtkapazität abzüglich der verwendeten Bandbreite. Hierfür kann man ein Skript verwenden, dass die aktuell verwendete (zeitlich gemittelte) Bandbreite vom Gateway ausliest, mit der Gesamtkapazität vergleicht und die noch freie Bandbreite an die GW Selection weitergibt.

Importieren des Skripts aus einer Vorlage: wget https://raw.githubusercontent.com/FreifunkFranken/configs/master/dyn_announce_gw_bw.sh -P /usr/local/bin/

Alternativ kann das Skript auch als leere Datei erstellt werden: touch /usr/local/bin/dyn_announce_gw_bw.sh

Wir machen das Skript ausführbar und öffnen die Datei: chmod +x /usr/local/bin/dyn_announce_gw_bw.sh

vi /usr/local/bin/dyn_announce_gw_bw.sh

Und Füllen dieses mit Inhalt oder editieren den importierten Inhalt:

#!/bin/bash
gwsel_lockfile="/tmp/gwsel_lockfile"  # lockfile to allow for low bandwidth settings 

if [ -z "$1" ]; then
        echo
        echo "usage: $0 <network-interface> <update_interval [sec]> <total BW up [Mbit/sec]> <total BW down [Mbit/sec]>"
        echo
        echo "e.g. $0 eth0 60 10 10"
        echo
        exit
fi

while true
do
    if [ ! -e ${gwsel_lockfile} ]; then    # lockfile not present
        # Bandwidth currently used (time averaged)
        R1=$(cat "/sys/class/net/$1/statistics/rx_bytes")
        T1=$(cat "/sys/class/net/$1/statistics/tx_bytes")
        sleep "$2"
        R2=$(cat "/sys/class/net/$1/statistics/rx_bytes")
        T2=$(cat "/sys/class/net/$1/statistics/tx_bytes")
        TkbitPS=$(echo "scale=0; ($T2 - $T1) / 1024 * 8 / $2" | bc -l)
        RkbitPS=$(echo "scale=0; ($R2 - $R1) / 1024 * 8 / $2" | bc -l)
#        echo "BW used      -- up $1: $TkbitPS kBit/s; down $1: $RkbitPS kBit/s"

        # Remaining bandwidth available; cut-off negative values
        Tavail_kbitPS=$(echo "scale=0; if (($3 * 1024 - $TkbitPS) >0) ($3 * 1024 - $TkbitPS) else 0" | bc -l)
        Ravail_kbitPS=$(echo "scale=0; if (($4 * 1024 - $RkbitPS) >0) ($4 * 1024 - $RkbitPS) else 0" | bc -l)
#        echo "BW available -- up $1: $Tavail_kbitPS kBit/s; down $1: $Ravail_kbitPS kBit/s"
    else                                     # lockfile present
        Tavail_kbitPS=0
        Ravail_kbitPS=0
        sleep "$2"
    fi

    for bat in /sys/class/net/bat*; do
              iface=${bat##*/}
              if [ `pidof dhcpd` > "0" ]
              then
                   batctl -m $iface gw_mode server "${Ravail_kbitPS}kbit/${Tavail_kbitPS}kbit"
              else
                   batctl -m $iface gw_mode server off
                   /etc/init.d/isc-dhcp-server restart
              fi

    done
done

Achtung: Wenn man ein bat Interface hat, das nicht Gateway ist muss man dies aus der letzten Schleife ausschließen da sonst dort ebenfalls die Gatewayselection aktiviert wird und man eine Bandbreite announced.

Das Skript übernimmt als Parameter:

  • Netzwerkinterface, das es zu überwachen gilt (i.d.R. eth0)
  • Updateintervall in Sekunden, in denen ein neuer Wert durch die B.A.T.M.A.N GW Selection annonciert wird (Um nicht allzu volatil auf Kurzzeitschwankungen im Durchsatz zu reagieren empfiehlt sich ein Mittelungsintervall zwischen 30 und 120 Sekunden)
  • Upload Kapazität in Mbit/sec (insgesamt zur Verfügung stehend s.o.)
  • Download Kapazität in Mbit/sec (insgesamt zur Verfügung stehend s.o.)

Bei Existenz des oben definierten Lockfiles "/tmp/gwsel_lockfile", annonciert das Gateway nur noch eine minimale Bandbreite. Dies dient dazu, möglichst keine neuen Clients zu akquirieren, z.B. weil gerade der VPN Tunnel ausgefallen ist und nur noch eine Babel Defaultroute mit geringer Bandbreite verfügbar ist.

Ein Aufruf für eth0 als Interface, ein Update alle 5 Minuten, 12 Mbit/sec maximaler Upload und 10 Mbit/sec maximaler Download wäre z.B.: /usr/local/bin/dyn_announce_gw_bw.sh eth0 300 12 10

Bei Debian 9 muss das Interface angepasst werden. Als Beispiel: /usr/local/bin/dyn_announce_gw_bw.sh ens18 300 12 10

Um die Gateway Selection beim Systemsstart zu aktivieren, können wir das Skript z.B. in rc.local aufrufen: vi /etc/rc.local

um dort, leicht zeitverzögert, o.a. Befehl einzupflegen, wobei die Parametrisierung noch Gateway-spezifisch angepasst werden muss:

.
.
.
#enable batman GW selection with 15 seconds delay
(sleep 15; /usr/local/bin/dyn_announce_gw_bw.sh eth0 300 12 10) &
.
.
.


auf den Routern kann der vorselektierte Gateway mit

batctl gwl

angeguckt werden.

Gatewayselection abschalten wenn Lease voll

Wenn man mit den dhcp Leases am Limit ist, sollte das Script angepasst werden das es die Gatewayselection abschaltet wenn nur noch wenige Leases offen sind. Dazu muss vor den letzten "done" folgender Teil hinzugefügt werden, Beispiel für Hood Erlangen auf nue2-gw1. Das grep muss auf die entsprechende IP Range angepasst werden und der IF Vergleich auf die maximale Menge an Leases, man sollte dabei noch einen Puffer offen halten.

# Erlangen schalten wir die Gatewayselection zur Sicherheit bei 450 leases ab, damit noch etwas Puffer nach oben ist! 
leasecount=$(/usr/sbin/dhcp-lease-list --parsable --lease /var/lib/dhcp/dhcpd.leases 2>&1 | grep "10.50.6" | wc -l) 
if [ $leasecount -gt 450 ] 
then 
batctl -m bat1 gw_mode off 
fi

DHCP Server

Die DHCP Konfiguration kann schon mal vorbereitet werden, sollte aber erst mit als vorletzter Schritt scharf geschaltet werden. Ein DHCP-Server, der Clients nicht funktionierende DNS-Server oder ein nicht funktionierendes Gateway mitteilt, sperrt diese aus dem Freifunk Netz aus.

In isc-dhcp-server definieren wir ... vi /etc/default/isc-dhcp-server

... das der DHCP Server für das B.A.T.M.A.N Device Anfragen beantworten soll:

.
.

INTERFACES="bat0"
.
.

Nachfolge Konfiguration wird in auskommentierter Form vorbereitet und sollte erst im letzten Schritt durch Einkommentieren und durch einen Neustart des DHCP Servers... /etc/init.d/isc-dhcp-server restart ...aktiviert werden.

Die Konfiguration wird in dhcpd.conf vorgenommen: vi /etc/dhcp/dhcpd.conf

und folgender Konfigurationsblock zunächst auskommentiert eingefügt, wobei Gateway und Hood spezifische Änderungen noch eingepflegt werden müssen:

.
.
.
### Freifunk Franken
#option domain-name "fff.community";
#option domain-name-servers 10.50.16.1;
#authoritative;
### Fuerth
#shared-network fff-fuerth {
#    subnet 10.50.32.0 netmask 255.255.248.0 {                  # Netzwerk und Netzmaske der Fuerther Hood
#        range 10.50.38.0 10.50.39.254;                     # IP-Range die der DHCP-Server innerhalb der Fuerther Hood verwaltet 
#        option routers 10.50.32.5;                         # Default-Gateway, dass Clients mitgeteilt wird 
#        option domain-name-servers 10.50.32.5, 10.50.32.1; # Name-Server, die Clients mitgeteilt werden
#    }
#}

Netzwerk und Netzmaske müssen derjenigen der Hood des Gateways entsprechen. Im Beispiel ist dies Fürth, für z.B. Hassberge hieße der Eintrag "subnet 10.50.56.0 netmask 255.255.252.0".

Der IP-Bereich (Range), die der DHCP-Server in der Hood verwaltet, wurde zuvor unter Portal:Netz reserviert.

Unter Routers wird den Clients das Default-Gateway mitgeteilt: Das Gateway, über das Clients das Internet oder eine andere Hood erreichen. In unserem Beispiel routet das aufgesetzte Gateway selber via VPN ins Internet oder via olsr (später) in andere Hoods. Als Default-Gateway wird also die eigene statische IP des Gateways, aus der eigenen Hood, die in Portal:Netz reserviert wurde, verwendet.

Ähnlich verhält es sich mit den Nameservern: Auf unserem Gateway wurde ein DNS Server eingerichtet, also kann der domain-name-server unser eigenes Gateway, mit der reservierten statische IP aus der Hood, wie in Portal:Netz, sein. Als Backup empfiehlt sich ein weiterer DNS-Server aus der Hood, in unserem Beispiel ro1 in der Fürther.

GRE-Tunnel zu anderen Gateways

Um die einzelnen Hoods miteinander zu verbinden, werden die jeweiligen Gateways über GRE-Tunnel miteinander verbunden. Es reicht dabei nicht, den GRE Tunnel nur auf einem Gateway einzurichten, vielmehr müssen beide zu verbindende Gateways konfiguriert werden. Hierfür muss man mit dem Admin des jeweiligen Tunnelpartners in Kontakt treten => Server.

Der GRE-Tunnel wird in /etc/network/interfaces... vi /etc/network/interfaces

...mit folgenden noch auf das Gateway anzupassenden Einträgen deklariert:

auto <tunnel>
iface <tunnel> inet static
 address <Eigene IPv4 (Freifunk Netz)>
 pre-up ip -4 tunnel add $IFACE mode gre local <Eigene IPv4 (Internet)> remote <IPv4 des Tunnelpartners (Internet)> ttl 255
#pre-up ip -6 tunnel add $IFACE mode ip6gre local <Eigene IPv6 (Internet)> remote <IPv6 des Tunnelpartners (Internet)> ttl 255

 up ifconfig $IFACE multicast
 pointopoint <IPv4 des Tunnelpartners (Freifunk Netz)>
 post-up iptables -t mangle -A POSTROUTING -p tcp --tcp-flags SYN,RST SYN -o $IFACE -j TCPMSS --clamp-mss-to-pmtu
 post-up ip rule add iif $IFACE table fff
 post-up ip -6 rule add iif $IFACE table fff
 post-up ip rule add from 10.50.0.0/16 table fff
 post-up ip rule add to 10.50.0.0/16 table fff
 post-down ip rule del iif $IFACE table fff
 post-down ip -6 rule del iif $IFACE table fff
 post-down ip rule del from 10.50.0.0/16 table fff
 post-down ip rule del to 10.50.0.0/16 table fff
 post-down iptables -t mangle -D POSTROUTING -p tcp --tcp-flags SYN,RST SYN -o $IFACE -j TCPMSS --clamp-mss-to-pmtu
 post-down ip tunnel del $IFACE

Der Tunnelname, die Internetadresse beider Tunnelpartner und die Freifunkadresse beider Tunnelpartner müssen hierbei eingefügt werden. Für GRE-Tunnel wurde der Adressbereich 10.50.252.0/22 in Portal:Netz reserviert, in denen beiden Tunnelpartnern eine dezidierte IPv4 zugewiesen wird. Das Vorgehen wurde gewählt, um auch Hood-übergreifend Tunnel erstellen zu können. Hier verwendete IP-Adressen müssen in die Tabelle eingetragen werden und so als belegt gekennzeichnet werden.

Beispiel: Um als fff-nue1 einen Tunnel zu ro1 aufzubauen, können die IP-Adressen wie folgt gewählt werden:

<tunnel>                                  ro1
<Eigene IPv4 (Freifunk Netz)>             fff-nue1      10.50.252.1
<IPv4 des Tunnelpartners (Freifunk Netz)> ro1           10.50.252.0
<Eigene IPv4 (Internet)>                  fff-nue1      31.172.33.99
<IPv4 des Tunnelpartners (Internet)>      ro1           176.126.221.7

In der Partnerkonfiguration für ro1 werden die Rollen entsprechend vertauscht:

<tunnel>                                  fff-nue1
<Eigene IPv4 (Freifunk Netz)>             ro1           10.50.252.0
<IPv4 des Tunnelpartners (Freifunk Netz)> fff-nue1      10.50.252.1
<Eigene IPv4 (Internet)>                  ro1           176.126.221.7
<IPv4 des Tunnelpartners (Internet)>      fff-nue1      31.172.33.99         

Der Tunnel kann über den Aufruf von ifup <tunnel> ...aufgebaut werden, wobei <tunnel> der Name des GRE-Interfaces ist (im Beispiel ro1)

Nach Aufruf von ifconfig.. ifconfig sollten wir einen Eintrag für den Tunnel (in diesem Beispiel ro1) vorfinden:

.
.
.
ro1       Link encap:UNSPEC  HWaddr B0-7B-1C-73-30-30-3A-35-00-00-00-00-00-00-00-00  
          inet addr:10.50.252.1  P-t-P:10.50.252.0  Mask:255.255.255.255
          inet6 addr: fe80::200:5efe:b07b:1c73/64 Scope:Link
          UP POINTOPOINT RUNNING NOARP MULTICAST  MTU:1476  Metric:1
          RX packets:160913 errors:0 dropped:0 overruns:0 frame:0
          TX packets:146654 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:66984353 (63.8 MiB)  TX bytes:10675001 (10.1 MiB)
.
.
.



Einbringen des Gateways in die Hood / Keyserver

Abschliessend muss das Gateway im Keyserver als Gateway der entsprechenden Hood eingetragen werden. Hierfür benötigt man einen Keyserver-Administrator => Server.

Bevor man das Gateway der Hood zuordnet, empfiehlt sich ein persönliches Review durch einen erfahrenen Gateway-Admin. Das neue Gateway kann auch versuchsweise zunächst einer Test-Hood zugeordnet werden, um es erstmal auf korrekte Funktion zu überprüfen.

Der DHCP-Server sollte als letzter Schritt aktiviert werden (s.o.)

Einzelne IPs oder Services über anderen Server routen

Manchmal möchte man einzelne Clients oder bestimmte Services (Achtung Netzneutralität!) über einen anderen Server ins Internet routen. Dies ist folgendermaßen möglich. In meinen Beispiel route ich auf fff-gw-cd1 den kompletten Internettraffic von nbgland über fff-pi-cd1 ins Internet um den Mullvad auf fff-gw-cd1 zu entlasten (nbgland hat ein hohes Trafficaufkommen).

Routingtabelle anlegen

Zuerst brauchen wir eine weitere Routingtabelle:

vi /etc/iproute2/rt_tables

und fügen dort hinzu:

12	nbgland

Diese Routingtabelle füllen wir mit einem neuen default

ip route add default via 10.50.252.251 dev fff-pi-cd1 table nbgland

Routing erstellen

Anschließend können wir alle Pakete mit Iptables markieren und für diese markierten Pakete in die neue Routingtabelle gucken, in unserem Beispiel:

iptables -A PREROUTING -t mangle -s 10.50.88.0/21 ! -d 10.0.0.0/8 -j MARK --set-mark 3
ip rule add fwmark 3 table nbgland

Das heißt: Markiere alle Pakete mit dem "Marker 3" die von dem IP Bereich 10.50.88.0/21 hereinkommen und nicht als Ziel 10.0.0.0/8 haben (damit wird Freifunkinterner Traffic von der Regel ausgenommen). Mit dem ip rule Regel sagen wir das für alle Pakete mit dem Marker 3 in die neue Routingtabelle nbgland geguckt werden soll wo der neue default fff-pi-cd1 drinnen steht. Da mit Iptables sehr viele möglichkeiten bestehen ist man über diesen Weg extrem flexibel, man könnte z.b. alle Torrentpakete markieren (Achtung Netzteutralität!) und über einen "Müllserver" ausleiten.

Problem wenn Server offline

Ein Problem bleibt noch, was passiert wenn fff-pi-cd1 offline ist? Genau da dies ganze am Olsr "vorbei" läuft stehen alle markierten Pakete dann ohne Exit (in unseren Fall ganz nbgland ohne Internet) da. Dazu hab ich das OpenVPN Start/Stop Automatik von Green ein wenig vereinfacht und angepasst für unsere bedürfnisse:

#!/bin/bash
ping1 () {
    ping -c 3 -i 5 8.8.8.8 -I fff-pi-cd1
    ping1_ExitCode=$?
    echo "$(date): Exit Status: ${ping1_ExitCode}"
}


while true
do
    ping1
    # check if ping successful
    if ([[ ${ping1_ExitCode} -eq 0 ]]); then
        sleep 10;
                echo "Ping success";
    else
                echo "Ping fault";
                iptables -D PREROUTING -t mangle -s 10.50.88.0/21 ! -d 10.0.0.0/8 -j MARK --set-mark 3
    fi
done

Das Script wird gestartet und läuft in einer Endlosschleife. Es wird regelmäßig versucht über fff-pi-cd1 8.8.8.8 zu pingen und falls dies nicht mehr gelingt wird die iptables Regel mit -D entfernt, somit werden die Pakete nicht mehr markiert und Olsr hat wieder die Kontrolle über den Traffic. Ein automatisches reaktivieren findet aktuell nicht statt, dies müsste ich nach beheben des Problems manuell anstoßen. Diese Konstellation läuft jetzt schon seit 6. Januar problemlos, es gab keine beschwerden und das Script musste noch nicht einmal eingreifen.

Achtung: Falls am fff-pi-cd1 der OpenVPN abstürzt baut dort Olsr auf einen anderen Server um. Da dadurch der Ping nach wie vor gelingt, wird die iptables Rule auch nicht entfernt. Man sollte also dafür sorgen das fff-pi-cd1 einen guten 2. Exit hat, falls OpenVPN abstürzt. Dies ist heute passiert und da es keinen guten Exit gab, war nbgland einige Zeit ziemlich lahm.

Problem nf_conntrack

Bei vielen Clients und vorallem NAT und anderen Iptables kann es passieren das die nf_conntrack auf den Server voll läuft. Wenn dies passiert fängt der Server an Pakete zu verwerfen und ist dann nur noch schwer erreichbar. Zu erkennen ist das auch wenn dmesg unmengen von

nf_conntrack: table full, dropping packet

um sich wirft.

Folgendes sollte man im Auge behalten:

Ermitteln des conntrack_max

cat /proc/sys/net/ipv4/netfilter/ip_conntrack_max

Debian9:

cat /proc/sys/net/nf_conntrack_max

Ermitteln des aktuellen conntrack count

/sbin/sysctl net.netfilter.nf_conntrack_count

sollte die aktuell Größe nahe an die maximale Größe kommen, kann diese vergrößert werden:

sysctl -w net.netfilter.nf_conntrack_max=131072
echo 32768 > /sys/module/nf_conntrack/parameters/hashsize

zu beachten ist, das eine größere conntrack auch mehr Arbeitsspeicher fordert. Unter 4GB sollte sie nicht vergrößert werden. Der hashsize sollte 1/4 des conntrack_max Wertes betragen Der Wert kann auch permamenent angepasst werden:

vi /etc/sysctl.conf  // Am Ende einfügen
net.netfilter.nf_conntrack_count = 131072
vi /etc/rc.local
echo 32768 > /sys/module/nf_conntrack/parameters/hashsize

zusätzlich kann das unnötig lange Timeout verringert werden um den conntrack count schon von Grund auf kleiner zu halten:

vi /etc/sysctl.conf // Am Ende einfügen
net.ipv4.netfilter.ip_conntrack_generic_timeout = 120
net.ipv4.netfilter.ip_conntrack_tcp_timeout_established = 54000

bzw. die Werte sofort setzen:

sysctl -w net.ipv4.netfilter.ip_conntrack_generic_timeout=120
sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_established=54000

Quelle: [2]

ARP Cache erhöhen

ACHTUNG: Das ganze ist noch nicht intensiv getestet, bitte bei Änderungen beobachten! Default ist im Linux der Arp Cache relativ klein. Wenn man mehrmals hintereinander die Menge an ARP Einträgen im Cache abfragt (z.b. ip neigh show | wc -l) und man feststellt das der Cache regelmäßig aufgeräumt wird (Zahl springt alle paar Sekunden wieder auf einen deutlich kleineren Wert zurück) sollte man den Wert erhöhen um die Arp Requests im Netz zu verringern. Dies geht über sysctl Variablen:

sysctl -w net.ipv6.neigh.default.gc_thresh1=128
sysctl -w net.ipv6.neigh.default.gc_thresh2=512
sysctl -w net.ipv6.neigh.default.gc_thresh3=1024
sysctl -w net.ipv4.neigh.default.gc_thresh1=128
sysctl -w net.ipv4.neigh.default.gc_thresh2=512
sysctl -w net.ipv4.neigh.default.gc_thresh3=1024

die oben angegeben Werte sind die default Werte. Weitere Infos zu den Werten: https://wiki.manitu.de/index.php/Server:Fehlermeldung_%22kernel:_Neighbour_table_overflow%22

Ich hab z.b. auf nue2gw3 mit ~2400 Clients die Werte auf 2048 4096 8192 gesetzt.

Port Sperren

Es empfiehlt sich folgende Ports / IPs zu sperren

Ausgehend:

  • tcp-25
  • tcp-137
  • udp-137
  • ip-10.0.0.0/8
  • ip-172.16.0.0/12
  • ip-192.168.0.0/16
  • ip-100.64.0.0/10
  • ip-169.254.0.0/10
  • ip-192.0.0.0/24
  • ip-192.0.2.0/24
  • ip-198.18.0.0/15
  • ip-198.51.100.0/24
  • ip-203.0.113.0/24
  • ip-0.0.0.0/8

Gateways, welche beim Hoster Hetzner stehen, sollte weitere Vorkehrungen treffen. Hetzner monitored den Traffic, den die Gateways verursachen. Sollten Verbindungsversuche zu nicht gerouteten IPs dabei sein, generiert Hetzner Abuse und schickt es (Achtung!) nicht an die hinterlegte Abuse-Adresse. Was man dagegen tun kann ist hier beschrieben: Hetzner